Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836177

RESUMO

Three carbon-chain extension genes associated with fatty acid synthesis in upland cotton (Gossypium hirsutum), namely GhKAR, GhHAD, and GhENR, play important roles in oil accumulation in cotton seeds. In the present study, these three genes were cloned and characterized. The expression patterns of GhKAR, GhHAD, and GhENR in the high seed oil content cultivars 10H1014 and 10H1041 differed somewhat compared with those of 10H1007 and 2074B with low seed oil content at different stages of seed development. GhKAR showed all three cultivars showed higher transcript levels than that of 2074B at 10-, 40-, and 45-days post anthesis (DPA). The expression pattern of GhHAD showed a lower transcript level than that of 2074B at both 10 and 30 DPA but a higher transcript level than that of 2074B at 40 DPA. GhENR showed a lower transcript level than that of 2074B at both 15 and 30 DPA. The highest transcript levels of GhKAR and GhENR were detected at 15 DPA in 10H1007, 10H1014, and 10H1041 compared with 2074B. From 5 to 45 DPA cotton seed, the oil content accumulated continuously in the developing seed. Oil accumulation reached a peak between 40 DPA and 45 DPA and slightly decreased in mature seed. In addition, GhKAR and GhENR showed different expression patterns in fiber and ovule development processes, in which they showed high expression levels at 20 DPA during the fiber elongation stage, but their expression level peaked at 15 DPA during ovule development processes. These two genes showed the lowest expression levels at the late seed maturation stage, while GhHAD showed a peak of 10 DPA in fiber development. Compared to 2074B, the oil contents of GhKAR and GhENR overexpression lines increased 1.05~1.08 folds. These results indicated that GhHAD, GhENR, and GhKAR were involved in both seed oil synthesis and fiber elongation with dual biological functions in cotton.

2.
Int J Biol Macromol ; 241: 124571, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100328

RESUMO

TBL (Trichome Birefringence Like) gene family members are involved in trichome initiation and xylan acetylation in several plant species. In our research, we identified 102 TBLs from G. hirsutum. The phylogenetic tree classified TBL genes into five groups. Collinearity analysis of TBL genes indicated 136 paralogous gene pairs in G. hirsutum. Gene duplication indicated that WGD or segmental duplication contributed to the GhTBL gene family expansion. Promoter cis-elements of GhTBLs were related to growth and development, seed-specific regulation, light, and stress responses. GhTBL genes (GhTBL7, GhTBL15, GhTBL21, GhTBL25, GhTBL45, GhTBL54, GhTBL67, GhTBL72, and GhTBL77) exhibited upregulated response under exposure to cold, heat, NaCl, and PEG. GhTBL genes exhibited high expression during fiber development stages. Two GhTBL genes (GhTBL7 and GhTBL58) showed differential expression at 10 DPA fiber, as 10 DPA is a fast fiber elongation stage and fiber elongation is a very important stage of cotton fiber development. Subcellular localization of GhTBL7 and GhTBL58 revealed that these genes reside inside the cell membrane. Promoter GUS activity of GhTBL7 and GhTBL58 exhibited deep staining in roots. To further validate the role of these genes in cotton fiber elongation, we silenced these genes and observed a significant reduction in the fiber length at 10 DPA. In conclusion, the functional study of cell membrane-associated genes (GhTBL7 and GhTBL58) showed deep staining in root tissues and potential function during cotton fiber elongation at 10 DPA fiber.


Assuntos
Fibra de Algodão , Proteínas de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Duplicação Gênica , Genes de Plantas , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
3.
Front Plant Sci ; 13: 844946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371175

RESUMO

Fast and uniform seed germination is essential to stabilize crop yields in agricultural production. It is important to understand the genetic basis of seed germination for improving the vigor of crop seeds. However, little is known about the genetic basis of seed vigor in cotton. In this study, we evaluated four seed germination-related traits of a core collection consisting of 419 cotton accessions, and performed a genome-wide association study (GWAS) to explore important loci associated with seed vigor using 3.66 million high-quality single nucleotide polymorphisms (SNPs). The results showed that four traits, including germination potential, germination rate, germination index, and vigor index, exhibited broad variations and high correlations. A total of 92 significantly associated SNPs located within or near 723 genes were identified for these traits, of which 13 SNPs could be detected in multiple traits. Among these candidate genes, 294 genes were expressed at seed germination stage. Further function validation of the two genes of higher expression showed that Gh_A11G0176 encoding Hsp70-Hsp90 organizing protein negatively regulated Arabidopsis seed germination, while Gh_A09G1509 encoding glutathione transferase played a positive role in regulating tobacco seed germination and seedling growth. Furthermore, Gh_A09G1509 might promote seed germination and seedling establishment through regulating glutathione metabolism in the imbibitional seeds. Our findings provide unprecedented information for deciphering the genetic basis of seed germination and performing molecular breeding to improve field emergence through genomic selection in cotton.

4.
Nat Genet ; 53(9): 1385-1391, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373642

RESUMO

Cotton produces natural fiber for the textile industry. The genetic effects of genomic structural variations underlying agronomic traits remain unclear. Here, we generate two high-quality genomes of Gossypium hirsutum cv. NDM8 and Gossypium barbadense acc. Pima90, and identify large-scale structural variations in the two species and 1,081 G. hirsutum accessions. The density of structural variations is higher in the D-subgenome than in the A-subgenome, indicating that the D-subgenome undergoes stronger selection during species formation and variety development. Many structural variations in genes and/or regulatory regions potentially influencing agronomic traits were discovered. Of 446 significantly associated structural variations, those for fiber quality and Verticillium wilt resistance are located mainly in the D-subgenome and those for yield mainly in the A-subgenome. Our research provides insight into the role of structural variations in genotype-to-phenotype relationships and their potential utility in crop improvement.


Assuntos
Fibra de Algodão/análise , Genoma de Planta/genética , Gossypium/genética , Gossypium/fisiologia , Agricultura/métodos , Ligação Genética , Variação Genética/genética , Genótipo , Gossypium/classificação , Fenótipo , Locos de Características Quantitativas/genética , Análise de Sequência de DNA , Indústria Têxtil/métodos
5.
Plant Biotechnol J ; 18(10): 2002-2014, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32030869

RESUMO

Xinjiang has been the largest and highest yield cotton production region not only in China, but also in the world. Improvements in Upland cotton cultivars in Xinjiang have occurred via pedigree selection and/or crossing of elite alleles from the former Soviet Union and other cotton producing regions of China. But it is unclear how genomic constitutions from foundation parents have been selected and inherited. Here, we deep-sequenced seven historic foundation parents, comprising four cultivars introduced from the former Soviet Union (108Ф, C1470, 611Б and KK1543) and three from United States and Africa (DPL15, STV2B and UGDM), and re-sequenced sixty-nine Xinjiang modern cultivars. Phylogenetic analysis of more than 2 million high-quality single nucleotide polymorphisms allowed their classification two groups, suggesting that Xinjiang Upland cotton cultivars were not only spawned from 108Ф, C1470, 611Б and KK1543, but also had a close kinship with DPL15, STV2B and UGDM. Notably, identity-by-descent (IBD) tracking demonstrated that the former Soviet Union cultivars have made a huge contribution to modern cultivar improvement in Xinjiang. A total of 156 selective sweeps were identified. Among them, apoptosis-antagonizing transcription factor gene (GhAATF1) and mitochondrial transcription termination factor family protein gene (GhmTERF1) were highly involved in the determination of lint percentage. Additionally, the auxin response factor gene (GhARF3) located in inherited IBD segments from 108Ф and 611Б was highly correlated with fibre quality. These results provide an insight into the genomics of artificial selection for improving cotton production and facilitate next-generation precision breeding of cotton and other crops.

6.
Ying Yong Sheng Tai Xue Bao ; 30(2): 602-614, 2019 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-30915813

RESUMO

Biological agent is an important green pathway to control Verticillium wilt. A field experiment was performed to examine the effects of Bacillus subtilis agent (15, 30 and 45 kg·hm-2), Trichoderma humatum agent (15, 18 and 24 kg·hm-2), 'Yufeng 99' agent (15, 22.5 and 30 kg·hm-2) and Zhongnonglyukang agent (30, 45 and 60 kg·hm-2) on cotton Verticillium wilt and soil microbial community. The results showed that all of the four biological agents could reduce the incidence and index of cotton Verticillium wilt, with control effects of 50.0%-77.4% in the whole growth period of cotton. The control effects of B. subtilis, 'Yufeng 99' and Zhongnonglyukang agent were positively correlated with the application doses, while that of T. humatum agent of 18 kg·hm-2 was significantly higher than 15 and 24 kg·hm-2. The relative abundance of V. dahliae was significantly reduced, which was negatively correlated with the control effect. The quantity and species richness of soil bacteria were significantly increased with the increases of application doses. The quantity and species abundance of actinomycete were significantly increased, while the quantity of actinomycete varied greatly among different application doses. The quantity and species richness of fungi increased with the increased application doses of T. humatum agent, but was decreased with the increased application doses of other three biological agents, respectively. The control effect was positively correlated with the quantity of bacteria and actinomycetes, but was negatively correlated with that of fungi. Meanwhile, the control effect was significantly and positively correlated with the abundance of Actinomycetes, Nitrospirae, Ascomycota, Chytridiomycota, but was significantly and negatively correlated with that of Deuteromycota. The application doses of 'Yufeng 99', zhongnonglyukang, B. subtilis and T. humatum agents were suggested to be 30, 60, 45 and 18 kg·hm-2, respectively.


Assuntos
Verticillium , Fatores Biológicos , Doenças das Plantas , Rizosfera , Solo , Microbiologia do Solo
7.
J Genet ; 96(6): e55-e63, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321342

RESUMO

Identification of molecular markers associated with fibre traits can accelerate cotton marker-assisted selection (MAS) programmes. In this study, Gossypium barbadense germplasm accessions with diverse origins (n = 123) were used to perform association analysis of fibre traits with 120 polymorphic simple sequence repeat (SSR) markers. In total, 120 polymorphic primer pairs amplified 258 loci with a mean of 2.15 loci per primer. Population structure analysis identified three main clusters for the accessions, which indicated agreement of genetic and predefined populations. Marker-trait associations (n = 58) were detected for 10 fibre traits with 26 SSR markers located on 15 chromosomes. The R² (phenotypic variation explained) ranged from 3.19 to 15.21%. Two markers (NAU5465 and NAU3013) were found to be stably associated with boll number per plant (BNP) and fibre uniformity (UI), respectively. Four markers (BNL252, NAU3424,NAU3324 and CGR5202) associated with fibre quality traits preferentially clustered on the D8 chromosome, which was thus identified as an important candidate region for study molecular mechanisms underlying fibre quality and for use in breeding cotton cultivars for improving fibre quality. This study generated molecular data with a potential for better understanding of the genetic basis of the fibre traits and provided new markers for MAS in G. barbadense breeding programmes.


Assuntos
Marcadores Genéticos , Variação Genética , Gossypium/química , Gossypium/genética , Repetições de Microssatélites , Locos de Características Quantitativas , Mapeamento Cromossômico , Genoma de Planta , Genótipo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...